M1.(a) (sulfuric acid is) completely / fully ionised

In aqueous solution or when dissolved in water
(b) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
allow multiples
1 mark for equation
1 mark for state symbols
(c) adds indicator, eg phenolpthalein / methyl orange / litmus added to the sodium hydroxide (in the conical flask)
do not accept universal indicator
(adds the acid from a) burette
with swirling or dropwise towards the end point or until the indicator just changes colour
until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red (for methyl orange) or blue to red (for litmus)
(d) titrations 3, 4 and 5
or

Page 2

$27.12 \mathrm{~cm}^{3}$
accept 27.12 with no working shown for $\mathbf{2}$ marks
allow 27.1166 with no working shown for $\mathbf{2}$ marks
(e) Moles $\mathrm{H}_{2} \mathrm{SO}_{4}=$ conc \times vol $=0.00271$
allow ecf from 8.4

Ratio $\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{NaOH}$ is $1: 2$
or
Moles $\mathrm{NaOH}=$ Moles $\mathrm{H}_{2} \mathrm{SO}_{4} \times 2=0.00542$

Concentration $\mathrm{NaOH}=\mathrm{mol} / \mathrm{vol}=0.00542 / 0.025=0.2168$
$0.217\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$
accept 0.217 with no working for 4 marks
accept 0.2168 with no working for 3 marks
(f) $\frac{20}{1000} \times 0.18=$ no of moles
or
$0.15 \times 40 \mathrm{~g}$

0.144 (g)

accept $0.144 g$ with no working for 2 marks

M2.(a) 31
(b) (i) any two from:

- incorrect reading of thermometer / temperature
- incorrect measurement of volume of acid
- incorrect measurement of volume of alkali (burette).
(ii) glass is a (heat) conductor or polystyrene is a (heat) insulator
answer needs to convey idea that heat lost using glass or not lost using polystyrene
accept answers based on greater thermal capacity of glass (such as "glass absorbs more heat than polystyrene")
(c) (i) temperature increases
(ii) no reaction takes place or all acid used up or potassium hydroxide in excess
cool / colder potassium hydroxide absorbs energy or lowers temperature ignore idea of heat energy being lost to surroundings
(iii) take more readings
ignore just "repeat"
around the turning point or between $20 \mathrm{~cm}^{3}$ and $32 \mathrm{~cm}^{3}$ accept smaller ranges as long as no lower than $20 \mathrm{~cm}^{3}$ and no higher than $32 \mathrm{~cm}^{3}$
(d) 1.61 or $1.6(12903)$
correct answer with or without working scores 3 if answer incorrect, allow a maximum of two from: moles nitric acid $=(2 \times 25 / 1000)=0.05$ for 1 mark moles $\mathrm{KOH}=($ moles nitric acid $)=0.05$ for 1 mark concentration $\mathrm{KOH}=0.05 / 0.031$
(e) same amount of energy given out
which is used to heat a smaller total volume or mixture has lower thermal capacity or
number of moles reacting is the same but the total volume / thermal capacity is less
if no other marks awarded award 1 mark for idea of reacting faster

M3. (a) Hydrogen / H^{+} ignore state symbols ignore proton / H
(b) $\quad i t=$ weak acid
pH of weak acid is higher than the pH of a strong acid allow converse for strong acids allow correct numerical comparison
any one from:
allow converse for strong acids

- only partially dissociated (to form ions)
allow ionises less
- not as many hydrogen ions (in the solution)
allow fewer H^{+}released
(c) (i) (titration of) weak acid and strong base
(ii) 0.61
correct answer with or without working gains $\mathbf{2}$ marks
if the answer is incorrect:
moles of sodium hydroxide $=(30.5 \times 0.5) / 1000=0.01525$ moles
or
($0.5 \times 30.5 / 25$) gains 1 mark
(d) 12
correct answer with or without working gains $\mathbf{2}$ marks or even

Page 7
with incorrect working.
if the answer is incorrect:
$0.8 \times 60=48 \mathrm{~g}$
or
evidence of dividing 48 g (or ecf) by 4
or
$\frac{0.8 \times 250}{1000}=\frac{0.8}{4}=0.8 \times 0.25=0.2 \mathrm{~mol}$
or
evidence of multiplying 0.2 mol (or ecf) by 60 would gain 1 mark

M4.

> (a) (i) incorrect test or no test $=\mathbf{0}$ mark testing the solution or using blue litmus $=\mathbf{0}$ mark
> (test ammonia / gas with red) litmus accept any acid-base indicator with correct result
(goes) blue
OR
(conc.) $\mathrm{HCl}(1)$
white fumes / smoke / solid (1) allow white gas / vapour

OR
(test ammonia / gas with) Universal Indicator (1)
blue / purple (1)
(ii) incorrect test or no test $=\mathbf{0}$ marks
add barium chloride / BaCl_{2} (solution)
do not accept $\mathrm{H}_{2} \mathrm{SO}_{4}$ added
or add barium nitrate / $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (solution)
allow Ba+ solution / aqueous added
white precipitate / solid (formed)
allow white barium sulfate / BaSO_{4}
ignore barium sulfate / BaSO ${ }_{4}$ alone
(b) (i) fully / completely ionised / dissociated or hydrogen ions fully dissociated

Page 9

accept has more ions than weaker acid / alkali of same concentration

ignore strongly ionised do not accept ions are fully ionised
ignore concentrated or reference to concentrations of ions
(ii) methyl orange
accept correct spelling only
accept any strong acid-weak base indicator
do not allow phenolphthalein / litmus / universal indicator
$(0.0032 \times 1000 / 25=) 0.128$
allow ecf from previous stage
correct answer 0.128 or 0.13 with or without working gains all 3 marks
(iv) 2.176 or 2.18
correct answer with or without working
or ecf from candidate's answer to (b)(iii)
or 2.55 if 0.15 moles used
if answer incorrect or no answer
0.128×17 or 0.13×17
or their (b)(iii) $\times 17$

M5. (a) (i) sodium hydroxide / NaOH (solution) accept potassium hydroxide / KOH accept ammonia (solution) / $\mathrm{NH}_{3}(\mathrm{aq}) / \mathrm{NH}_{4} \mathrm{OH}$ do not accept limewater / calcium hydroxide incorrect reagent or no reagent $=\mathbf{0}$ marks
(pale) green precipitate / solid allow iron(II) hydroxide / $\mathrm{Fe}(\mathrm{OH})_{2}$ (formed) allow OH^{-}/ hydroxide solution gives a green precipitate for 1 mark

1
(ii) (acidified) barium chloride / $\mathrm{BaCl} l_{2}$ barium nitrate $/ \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
do not accept sulphuric acid
incorrect reagent
or no reagent $=\mathbf{0}$ marks
white precipitate / solid allow barium sulfate / BaSO_{4} (formed)
allow a solution of barium ions / Ba* gives a white precipitate for 1 mark

1
(b) (i) credit can not be obtained for incorrect reactions carbonate (ions) give (white) ppt (with silver nitrate) owtte
(nitric) acid reacts with / removes / displaces carbonate (ions)
owtte
(ii) hydrochloric acid is a chloride / contains chloride (ions) / Cl^{-} accept hydrochloric acid reacts with silver nitrate do not accept chlorine

