M1. (a)	(sulfuri	sulfuric acid is) completely / fully ionised				
		In aqueous solution or when dissolved in water	1			
	(b)	$H^{\dagger}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$ allow multiples 1 mark for equation 1 mark for state symbols	2			
	(c)	adds indicator, eg phenolpthalein / methyl orange / litmus added to the sodium hydroxide (in the conical flask) do not accept universal indicator) 1			
		(adds the acid from a) burette	1			
		with swirling or dropwise towards the end point or until the indicator just changes colour	1			
		until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red (for methyl orange) or blue to red (for litmus)	1			
	(d)	titrations 3, 4 and 5				

or

$$\frac{27.05 + 27.15 + 27.15}{3}$$

1

27.12 cm³

accept 27.12 with no working shown for 2 marks

1

allow 27.1166 with no working shown for 2 marks

(e) Moles
$$H_2SO_4 = conc \times vol = 0.00271$$

allow ecf from 8.4

1

Ratio H₂SO₄:NaOH is 1:2

OI

Moles NaOH = Moles $H_2SO_4 \times 2 = 0.00542$

1

Concentration NaOH = mol / vol = 0.00542 / 0.025 = 0.2168

1

0.217 (mol / dm³)

accept 0.217 with no working for 4 marks

1

accept 0.2168 with no working for 3 marks

(f)
$$\frac{20}{1000} \times 0.18 = \text{no of moles}$$

or

 $0.15 \times 40 \text{ g}$

1

0.144 (g)

accept 0.144g with no working for **2** marks

[16]

2

1

1

1

1

1

1

- (b) (i) any **two** from:
 - incorrect reading of thermometer / temperature
 - incorrect measurement of volume of acid
 - incorrect measurement of volume of alkali (burette).
 - (ii) glass is a (heat) conductor **or** polystyrene is a (heat) insulator

 answer needs to convey idea that heat lost using glass **or** not lost
 using polystyrene
 accept answers based on greater thermal capacity of glass (such

as "glass absorbs more heat than polystyrene")

- (c) (i) temperature increases
 - (ii) no reaction takes place **or** all acid used up **or** potassium hydroxide in excess

 cool / colder potassium hydroxide absorbs energy **or** lowers temperature

 ignore idea of heat energy being lost to surroundings
 - (iii) take more readings ignore just "repeat"

around the turning point **or** between 20 cm³ and 32 cm³ accept smaller ranges as long as no lower than 20 cm³ and no higher than 32 cm³

(d) 1.61 **or** 1.6(12903)

correct answer with or without working scores **3** if answer incorrect, allow a maximum of **two** from: moles nitric acid = $(2 \times 25 / 1000) = 0.05$ for **1** mark moles KOH = (moles nitric acid) = 0.05 for **1** mark concentration KOH = 0.05 / 0.031

answer must be correctly rounded (1.62 is incorrect)

(e) same amount of energy given out

1

3

which is used to heat a smaller total volume **or** mixture has lower thermal capacity **or**

number of moles reacting is the same but the total volume / thermal capacity is less

if no other marks awarded award **1** mark for idea of reacting faster

[14]

1

M3.		(a)	Hydroge		
				ignore state symbols	
				ignore proton / H	:
	(b)		1	it = weak acid	
		рН	of weak	acid is higher than the pH of a strong acid	
				allow converse for strong acids	
				allow correct numerical comparison	1
		any	y one fro		
				allow converse for strong acids	
		•	only p	artially dissociated (to form ions)	
				allow ionises less	
		•	not as	many hydrogen ions (in the solution)	
				allow fewer H ⁻ released	1
					-
	(c)	(i)	(titrati	on of) weak acid <u>and</u> strong base	
					1
		(ii)	0.61		
				correct answer with or without working gains 2 marks	
				if the answer is incorrect:	
				moles of sodium hydroxide = $(30.5 \times 0.5)/1000 = 0.01525$ moles	
				or	
				(0.5 × 30.5/25) gains 1 mark	2
	(4)	12			

correct answer with or without working gains **2** marks or even

with incorrect working.

if the answer is incorrect:

$$0.8 \times 60 = 48g$$

or

evidence of dividing 48g (or ecf) by 4

01

$$\frac{0.8 \times 250}{1000} = \frac{0.8}{4} = \frac{0.8 \times 0.25 = 0.2 \text{ mol}}{0.8 \times 0.25 = 0.2 \text{ mol}}$$

or

evidence of multiplying 0.2mol (or ecf) by 60 would gain **1** mark

2

[8]

M4. (a) (i) incorrect test or no test = **0** mark testing the solution **or** using blue litmus = **0** mark (test ammonia / gas with red) litmus accept any acid-base indicator with correct result 1 (goes) blue OR (conc.) HCl (1) white fumes / smoke / solid (1) allow white gas / vapour OR (test ammonia / gas with) Universal Indicator (1) blue / purple (1) 1 (ii) incorrect test or no test = 0 marks add barium chloride / BaCl₂ (solution) do **not** accept H₂SO₄ added or add barium nitrate / Ba(NO₃)₂ (solution) allow Ba²⁺ solution / aqueous added 1 white precipitate / solid (formed) allow white barium sulfate / BaSO4 ignore barium sulfate / BaSO₄ alone 1

<u>fully</u> / <u>completely</u> ionised / dissociated <u>or</u> hydrogen ions fully <u>dissociated</u>

(b) (i)

accept has more ions than weaker acid / alkali of <u>same</u> concentration ignore strongly ionised do **not** accept ions are fully ionised ignore concentrated **or** reference to concentrations of ions 1 (ii) methyl orange accept correct spelling only accept any strong acid-weak base indicator do **not** allow phenolphthalein / litmus / universal indicator 1 (iii) $32 \times 0.05/1000$ or 0.0016 (mole H_2SO_4) $accept (0.05 \times 32) = (V \times 25) \text{ or } 0.05 \times 32 / 25$ 1 (reacts with) 2×0.0016 or 0.0032 (mole NH₃ in 25 cm³) accept dividing rhs by 2 **or** multiplying lhs by 2 1 $(0.0032 \times 1000/25 =) 0.128$ allow ecf from previous stage correct answer 0.128 or 0.13 with or without working gains all 3 marks 1 (iv) 2.176 **or** 2.18 correct answer with or without working or ecf from candidate's answer to (b)(iii) or 2.55 if 0.15 moles used

if answer incorrect or no answer

0.128 × 17 **or** 0.13 × 17 **or** their (b)(iii) × 17

[11]

2

M5. (a) (i) sodium hydroxide / NaOH (solution) accept potassium hydroxide / KOH accept ammonia (solution) / NH₃(aq) / NH₄OH do not accept limewater / calcium hydroxide incorrect reagent **or** no reagent = **0** marks 1 (pale) green precipitate / solid allow iron(II) hydroxide / Fe(OH)₂ (formed) allow OH / hydroxide solution gives a green precipitate for 1 mark 1 (ii) (acidified) barium chloride / BaCl₂ barium nitrate / Ba(NO₃)₂ do **not** accept sulphuric acid incorrect reagent **or** no reagent = **0** marks 1 white precipitate / solid allow barium sulfate / BaSO₄ (formed) allow a solution of barium ions / Ba²⁺ gives a white precipitate for 1 mark 1 (b) (i) credit can not be obtained for incorrect reactions carbonate (ions) give (white) ppt (with silver nitrate) owtte 1 (nitric) acid reacts with / removes / displaces carbonate (ions) owtte 1

(ii) hydrochloric acid is a chloride / contains chloride (ions) / Claccept hydrochloric acid reacts with silver nitrate do **not** accept chlorine

1

[7]